翻訳と辞書
Words near each other
・ Kosli cinema
・ Kosli drama
・ Kosli language
・ Kosli language movement
・ Koslov
・ Koslov's pika
・ Koslowski
・ KOSMA
・ Kosma Złotowski
・ Kosmach
・ Kosmaczewo
・ Kosmaj
・ Kosmaj (Pale)
・ Kosman
・ Kosman (surname)
Kosmann lift
・ Kosmas Air
・ Kosmas Balanos
・ Kosmas Gezos
・ Kosmas Thesprotos
・ Kosmas Tsilianidis
・ Kosmas, Greece
・ Kosmassom
・ Kosmati
・ Kosmati predsednik
・ Kosmaty Borek
・ Kosmaç
・ Kosmača
・ Kosmermoceras
・ Kosmeč


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kosmann lift : ウィキペディア英語版
Kosmann lift

In differential geometry, the Kosmann lift,〔Fatibene L., Ferraris M., Francaviglia M.
and Godina M. (1996), ''A geometric definition of Lie derivative for Spinor Fields'', in: Proceedings of the ''6th International Conference on Differential Geometry and Applications,'' August 28th–September 1st 1995 (Brno, Czech Republic), Janyska J., Kolář I. & J. Slovák J.
(Eds.), Masaryk University, Brno, pp. 549–558〕〔Godina M. and Matteucci P. (2003), ''Reductive G-structures and Lie derivatives'',
Journal of Geometry and Physics 47, 66–86〕〔Fatibene L. and Francaviglia M. (2011), ''General theory of Lie derivatives for Lorentz tensors'', Communications in Mathematics 19, 11–25〕 named after Yvette Kosmann-Schwarzbach, of a vector field X\, on a Riemannian manifold (M,g)\, is the canonical projection X_\, on the orthonormal frame bundle of its natural lift \hat\, defined on the bundle of linear frames.〔 (''Example'' 5.2) pp. 55-56〕
Generalisations exist for any given reductive G-structure.
==Introduction==
In general, given a subbundle Q\subset E\, of a fiber bundle \pi_\colon E\to M\, over M and a vector field Z\, on E, its restriction Z\vert_Q\, to Q is a vector field "along" Q not ''on'' (i.e., ''tangent'' to) Q. If one denotes by i_ \colon Q\hookrightarrow E the canonical embedding, then Z\vert_Q\, is a section of the pullback bundle i^_(TE) \to Q\,, where
:i^_(TE) = \\subset Q\times TE,\,
and \tau_\colon TE\to E\, is the tangent bundle of the fiber bundle E.
Let us assume that we are given a Kosmann decomposition of the pullback bundle i^_(TE) \to Q\,, such that
:i^_(TE) = TQ\oplus \mathcal M(Q),\,
i.e., at each q\in Q one has T_qE=T_qQ\oplus \mathcal M_u\,, where \mathcal M_ is a vector subspace of T_qE\, and we assume \mathcal M(Q)\to Q\, to be a vector bundle over Q, called the transversal bundle of the Kosmann decomposition. It follows that the restriction Z\vert_Q\, to Q splits into a ''tangent'' vector field Z_K\, on Q and a ''transverse'' vector field Z_G,\, being a section of the vector bundle \mathcal M(Q)\to Q.\,

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kosmann lift」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.